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The critical behavior at a corner in two-dimensional Ising and three-state Potts 
models is studied numerically on the square lattice using transfer operator 
techniques. The local critical exponents for the magnetization and the energy 
density for various opening angles are deduced from finite-size scaling results at 
the critical point for isotropic or anisotropic couplings. The scaling dimensions 
compare quite well with the values expected from conformal invariance, 
provided the opening angle is replaced by an effective one in anisotropic 
systems. 
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1. I N T R O D U C T I O N  

The surface shape of a system may have some influence on its local critical 
behavior at a second order phase transition. This was shown by Cardy ~ll 
for a magnetic system with O(N) symmetry within mean-field theory and 
in d = 4 -  e dimensions. The local magnetic exponent at a wedge was found 
to vary continuously with the opening angle 0. 

Marginal behavior was also obtained at a corner in the two-dimen- 
sional Ising model using the star-triangle recursion relation on the tri- 
angular lattice and the corner-to-corner spin correlation function on the 
square lattice to calculate the corner magnetization. 12 31 The same problem 
was later studied on the square lattice using row-to-row 14~ or corner ~5~ 
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transfer matrix techniques. An expression for the 90 ~ corner magnetization 
was conjectured in ref. 4. Recently, Abraham and Latr6moli+re ' '7~ 
obtained the edge magnetization analytically, as a function of the distance 
from the corner, thus confirming the conjecture of Kaiser and Peschel. 

Other systems were also considered, such as the planar Heisenberg 
antiferromagnet ~8~ and the self-avoiding walk confined into a wedge in two 
and three dimensionsJ 9 ~3~ 

In two dimensions a varying corner exponent x"(O) immediately 
follows from the conformal mapping w = z ~ which transforms the half- 
plane into a wedge with opening angle 0. ~4"2~ The decay of the critical 
corner-to-bulk correlation functions then gives 

X s x"( O) = -~ (1.1) 

where x" is the corresponding surface exponent. This result is valid for 
isotropic systems only. When the couplings are anisotropic, lengths have to 
be rescaled in order to restore isotropy ~2~ and (1.1) still applies with an 
effective value of the opening angle. 

The marginal local critical behavior may be understood by con- 
sidering a system with a "parabolic" shape, y = +_ CxU ts. ~6~ Under a length 
rescaling by a factor b, C transforms into C ' = b ~ - ~ C  Thus the flow is 
toward the flat surface geometry when a > 1 and toward the half-line when 

< 1. When ~ = 1, i.e., for the corner geometry, the surface shape is scale 
invariant and C=tan(O/2)  is the marginal variable. 

Up to now, the conformal result (1,1) has been checked for the local 
magnetic exponent xii,(O) with opening angles corresponding to simple 
fractions of n. In the present work, we extend these results by studying the 
local critical behavior of both the energy and the magnetization in the two- 
dimensional q-state Ports model with q- -2 ,  3. Various rational values of 
tan(0/2) and tan 0 are considered. In Section 2 we use a local operator for- 
malism for the construction of the row-to-row transfer matrices which are 
needed for the corner geometry on a square lattice. The corner exponents 
are deduced from a finite-size scaling analysis of the data for isotropic and 
anisotropic systems in Section 3. 

2. POTTS MODEL IN THE CORNER GEOMETRY 

We consider the zero-field Potts model with Hamiltonian 

- - f l ~  = ~ [K, (qcS. . . .n . . . .+  ~..iJ --  1 ) + K2(qd~... i , .  ,~. . . i+ ,~ - 1 ) ]  ( 2 . 1 )  
L j  
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where ~ is the Kronecker  delta function and the Potts variables cr(i, j )  take 
the values 0, 1 ..... q - 1. When q = 2, the Ising model is recovered. The sum 
runs over the bonds of a square lattice in the corner geometry as shown in 
Fig. I. The couplings are assumed to be anisotropic with values K~ in the 
vertical direction and K2 in the horizontal one. 

Let us define the row-to-row transfer matrix elements as 

T, ....... , = ( m l  T , , , l m - 1 )  

N ( m )  N ( m ) -  I 1 
= e x p  K~ ~ ( q 0 v . ~ ; - 1 ) + K _ ,  ~ (q6+j .v+~- l )  (2.2) 

j = .~ m ) .i ~ .'~( m ) 

where o-i(cr~.) denote the Potts variables on the ruth [ ( m - 1 ) t h ]  row, 
respectively. Ira) is a state vector corresponding to a configuration of the 
Potts variables from n ( m )  to N(m) along the ruth row and T,,, is the 
transfer operator  acting on this state vector. 

I 2 j �9 - �9 N-I N 
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The transfer operator can be written as the product T,,, = Vz(m) Vdm ) 
with ~ ~ 71 

N ( m )  q -  1 ] 

V,(m)=exp K* ~ ~, (Rj) ~' 
j = t l i m )  p ~  I 

N(nl ) -- I q -- I 7 

V2(m)=exp K2 2 ~. (C*Cj+,)" J J 
j = t t ( t n )  p =  1 

(2.3) 

K* is a dual coupling such that x~x*=q with xi=exp(qKi)-1.  The 
operator Cj is diagonal on the basis of the Potts states 1c%), whereas Rj 
acts as a ladder operator on the same basis, so that 

Ci lGj) =exp ( i 2 ~ / )  lcr/), 
�9 \ q ' 

( R y  IGj> = Icrj+p5 (mod q) (2.4) 

Introducing local transfer operators 

q - - I  

tL(j)=x, + y" (Rj) p, 
p = 0 

t2(J ) = 1 + ' - ~  L (c )c /+, )e  
q p = O  

(2.5) 

we have that, up to an unimportant constant factor, the row-to-row 
transfer operator appearing in (2.2) can be rewritten as 

NOn ) -- I N ( m  ) 

T,,,= H t2(j) H t,(j) (2.6) 
j = n m i = n m}  

This transfer operator may be viewed as a discrete time evolution 
operator acting on the Potts state vector at time m - 1  to make it evolve 
to its state at time m. Due to the corner geometry, this operator is time 
dependent. Given an initial state li) at time 0, corresponding to the top 
edge in Fig. 1, this state will evolve to 

Im) = T,,,T,,,_ l " ' "  T2Tt [i) (2.7) 

at time m. In the sequel we shall use either free or fixed boundary condi- 
tions on the top edge. Fixed boundary conditions correspond to an initial 
state [k) = la~ a2 -.. aN),  whereas for free boundary conditions one has to 
take a superposition I f )  = q-'V;2 Z~,,'= ~ [k) of the qN configurations of the 
N Potts variables with equal amplitudes. One may notice in Fig. 1 that a 
site variable o) with j<n(m) or j>N(m)  remains frozen at time m and 
later. 
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The corner magnetization m,. is calculated with the Potts variable a ~ 
where t is the index of the column corresponding to the tip (see Fig. 1). It 
is given by ~181 

q<6,,,,, o > -  1 1 qk' <f l  Cf  IM> (2.8) 
m , . -  q - 1  ' <gd"~ = q  r=o < f l M >  

where the average of the Kronecker delta follows from (2.4). The state I f )  
corresponds to free boundary conditions on the sides of the wedge, whereas 
IM> is defined as in (2.7) with Ii> = 100... 0>. Thus the top edge is fixed 
with all the sites in the state 0. At the critical point this symmetry-breaking 
boundary condition ensures that the tip magnetization remains non- 
vanishing on a finite system. 

The energy density associated with a bond can be defined, up to a 
constant factor, as the average of the Kronecker delta. When the bond is 
horizontal, the system evolves as above up to time M - 2 ,  where the value 
of g,,_,. ~, is taken (see Fig. 1), and the corner energy density is given by 

1 " - '  <f l  T M T M - , ( C ; _ , C , )  I' I M - 2 >  
e~!= <6" -"" ' 5  = qpE o = 7 - ~  ~t'-> (2.9) 

With a vertical bond one obtains nonvanishing contributions to the 
average of the Kronecker delta when there is no flip along this bond, so 
that t j( t)  in (2.5) contributes a factor 1 +x~.  With the geometry of Fig. 1 
the energy density can be written as 

e" = <t5 . . . .  ;> =(1 + x l )  
<f l  TM Ta,t_ , I-I./ t,_(j) 1-I j , , ,  t . ( j )  I M -  3> 

< f l M >  
(2.10) 

These expressions are easily generalized for other shapes. 

3. N U M E R I C A L  RESULTS 

The Potts exponents for the corner magnetization and the corner 
energy density have been obtained through finite-size scaling at the critical 
point for different opening angles, using the shapes sketched in Fig. 2. In 
order to limit the size N of the system, we use only unit steps (p = 1 ) in the 
horizontal direction and change the angle 0 by varying l (see Fig. 1). The 
maximum sizes studied are N = 19 for q = 2 (Ising model) and N = 11 for 
q = 3, so that an extrapolation of the finite-size estimates of the exponents 
is needed. Isotropic and anisotropic sytems have been considered. 
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(a) (b) (c) 

(d) (e) 

Fig. 2. The different system shapes used to calculate tile corner magnetization and energy 
density, The Ports states at the top edge (bold linel are either fixed or free. 

When  the system is isotropic the critical point ,  cor responding  to 
xj x2 = q, is located at K,. = (l /q)  In( 1 + x/q).  The  critical corner  magnet iza-  
tion decays as 

m~Y~'(N) = A,,,(O) N ";;, 

with the system size N. 
The  corner  exponent  x;i,(0) deduced fi 'om sequence ext rapola t ions  of  

the finite-size est imates using the BST a lgor i thm ~ ~9~ is given in Table  I. The  
numerical  results are in quite good  agreement  with the values expected 
from conformal  invariance in Eq. ( 1.1 ) with the surface magnet ic  exponents  
at the ordinary  surface transi t ion x,",= 1/2 for q = 2  and x,"i,=2/3 for 
q = 3J 14, 16) 

The critical corner  energy density 

e~r"(N) = e:~i'( ~ ) + A,.(O) N -":: 

contains  a regular  par t  which depends  on the opening angle and the bond  
orientation.  In order  to obta in  the corner  exponent  the regular  contr ibu-  
tion has to be subtracted.  This can be done  by calculating e~rit(N) for 
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Table I. Scaling Dimension of the Corner Magnetization for the q-State Potts 
Model as a Function of the Opening Angle" 

x',;, .%, 

0 (deg) q = 2 Expected 0 (deg) q = 3 Expected 

360(d) 0.25(I) 0.25 180(e) 0.667(1) 0.6667 
270(c) 0.332(1) 0.333333 90(b) 1.331(3) 1.3333 
225(c) 0.400(I) 0.4 53.13(b) 2.243(3) 2.2586 
180(e) 0.5000(1) 0.5 45(a) 2.66(1) 2.6667 
90(b) 0.999994(6) I 26.56(a) 4.516(3) 4.5172 
53.13(b) 1.693961(7) 1.693955 18.43(a) 6.52(2) 6.5094 
45(a) 2.00000(2) 2 14.04(a) 8.53(4) 8.5493 
36.87(b) 2.44098(6) 2.441016 11.31(a) 10.58(4) 10.6101 
28.07(b) 3.2057(3) 3.205986 9.46(a) 12.66(4) 12.6819 
22.62{b) 3.979(4) 3.978804 
1[.42(b) 7.8796(6) 7.880092 

"Tile numbers in parentheses give tile estimated uncertainty in tile last digit. The letters refer 
to the system shapes in Fig. 2. 

either fixed or free boundary conditions at the top edge. The asymptotic 
value is the same in both cases, but the amplitudes of the finite-size 
corrections are different. Taking the difference, one obtains 

;, fixed IYce --.',",i zle<.(N)=[A<. (0)-A<.  ( 0 ) ] N  

Proceeding in this way, one avoids a systematic error, linked with the 
estimation of the regular part, and the finite-size corrections are amplified 
because the signs of the amplitudes are different for the two boundary 
conditions. 

The extrapolated values of the finite-size estimates for the corner 
exponent x~i(O) are given in Table II. They do not depend on the bond 

Table II. As in Table I, for the Corner Energy Density 

0 (deg') q = 2 q = 3 Expected 

180(e) 2.001(I) 2.01(3) 2 
90( b ) 3.999( I ) 4.00(4) 4 
45(al 7.993(7) 8.0( 1 ) 8 
26.56(a1 13.52(2) 13.5(1) 13.5516 
18.43(a) 19.6(4) 19.7(4) 19.5281 
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orientation, as expected, and are identical for q = 2 and q = 3. This is 
consistent with the conformal result, since, at the ordinary transition, the 
surface exponent x" which enters in (1.1) is equal to 2, the dimension of the 
system, quite generally. ~2~ 16) The numerical values are in good agreement 
with the results expected from conformal invariance, too. 

The conformal expression for the corner exponent ( 1.1 ) only applies to 
systems where the correlations are isotropic. In the case of an anisotropic 
system, with a coupling constant ratio r =  K~/K2, the correlation lengths 
are different and take the values ~j and ~2 in the vertical and horizontal 
directions, respectively. Isotropy can be restored by changing the lattice 
parameters a~ and a 2 in such a way that, in the rescaled system, the 
correlation lengths become the same, i.e., ~ ta t=~2a2 .  tl'21 As a conse- 
quence, one obtains an effective opening angle which, in the geometry of 
Fig. 2a, is given by 

tan 0on-= ( tan 0, 

where ( is the anisotropy factor. 

~.=_=a_, ~l (3.1) 
a~ ~2 

For the Potts model, the following form of the anisotropy factor at the 
critical point has been conjectured: c2~ 

rcu sinu x,,. x/q 2 cos 2 = v / ~  (3.2) 
= tan 2-2' sin(2 - u) ~ - x_,c' 

When q = 2, it reduces to the known exact result ( = c o s h  2Ktc/cosh 2K,_, 
for the Ising model. ~2~ 

Table III. C o r n e r  Exponents for the Ising Model o n  an  Anisotropic Lattice as 
a Function of the Anisotropy Ratio r "  

x;;, x; 

r Numerical Expected N umerical Expected 

0.200 4.5737(8) 4.57374 18.2(6) 18.295 
0.300 3.595(2) 3.59518 14.36(8) 14.381 
0.400 3.05(2) 3.06772 12.2418) 12.271 
0.500 2.7326(1) 2.73264 I0.9215) 10.931 
0.600 2.4999(5) 2.49960 9.96(5) 9.998 

10.00 1.16(2) 1.16200 4.6(I) 4.648 

"We used the shape of Fig. 2a with an opening angle 0=45 ~ The numerical values are 
compared to the conformal result with a rescaled angle, as explained in the text. 
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Table IV. As in Table III, for the Three-State Potts Model 
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x',i, x',i 

r Numerical Expected Numerical Expected 

O. 109 9.31 ( 3 ) 9.30667 27( I ) 27.920 
0.166 6.98(4) 7.00928 21.2(9) 21.028 
0.259 5.30( 3 ) 5.31052 15.9(2) 15.93 I 
0.414 4.05(4) 4.05604 12.1(1) 12.168 
0.692 3.137(6) 3.13157 9.3( 1 ) 9.365 
1.241 2.45( I ) 2.45244 7.3( 1 ) 7.357 
2.561 1.955(6) 1.95572 5.8(2) 5.867 
7.530 1.5(I) 1.59445 4.6(2) 4.783 

The corner exponents x~i , and x',~ obtained on anisotropic systems with 
an opening angle 0 = 4 5  ~ in Fig. 2a and different anisotropy ratio r are 
given in Tables III  and IV. They are in good agreement with the conformal 
result (1.1) when the opening angle is replaced by its effective value given 
by (3.1). 

4. C O N C L U S I O N  

The scaling dimensions of the tip magnetization and energy density at 
a corner have been calculated for the Ising and three-state Ports models in 
two dimensions as functions of the opening angle 0. Using transfer 
operator  techniques and finite-size scaling at the critical point, we have 
tested the result of  conformal invariance, predicting a simple relation 
between corner exponents, surface exponents, and opening angle, for a 
broad spectrum of 0 values. In the case of the Ising model, the magnetiza- 
tion results extend previous studies where simple fractions of n were con- 
sidered, whereas the energy results are new. Isotropic and anisotropic 
systems have been treated. In the latter case, the conformal result still 
applies, provided the opening angle is properly rescaled in order to restore 
isotropy. 

As a possible extension of this work, one may mention the possiblity 
to consider the same problem for noninteger values of q, using the relation 
of the Potts model with either Withney polynomials (22~ or ice-rule vertex 
models.(_,3. 241 
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